Skip to main content
Chemistry LibreTexts

1.2: Example 2: The Harmonic Oscillator Revisited

  • Page ID
    20867
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Suppose we guessed, instead, a trial wave function of the form:

    \[\psi(x) = {1 \over x^2 + a^2} \equiv \psi(x;a)\]

    The potential and this trial wavefunction are illustrated in the figure below:

    figure=lec10_fig3.eps,height=4.0in,width=4.5in

    We now regard \(a\) as a variational parameter. Thus,

    \[\langle \psi\vert\psi\rangle = \int_{-\infty}^{\infty}\;dx\;{1 \over (x^2+a^2)^2}\]

    This integral can be evaluated easily by a trigonometric substitution:

    \(\displaystyle x\) \(\textstyle =\) \(\displaystyle a\tan\theta\)
    \(\displaystyle dx\) \(\textstyle =\) \(\displaystyle a\sec^2\theta\)

    from which

    \(\displaystyle \langle \psi\vert\psi\rangle\) \(\textstyle =\) $\displaystyle \int_{-\pi/2}^{\pi/2}\;{a\sec^2\theta d\theta \over
a^4(1+\tan^2\theta)^2 }$
    \(\textstyle =\) \(\displaystyle {1 \over a^3}\int_{-\pi/2}^{\pi/2}\cos^2\theta\;d\theta = {\pi \over 2a^3}\)

    With a little algebra, it can be similarly shown that

    \[\langle \psi\vert H\vert\psi\rangle = {\pi \hbar^2 \over 8ma^5} + {\pi m\omega^2 \over 4a}\]

    Thus,

    \[{\langle \psi\vert H\vert\psi\rangle \over \langle \psi\vert \rangle} = {\hbar^2 \over 4ma^2} +{1 \over 2}m\omega^2 a^2 = E(a)\]

    Now, minimizing with respect to \(\a\), we find

    \(\displaystyle E'(a) = {dE \over da}\) \(\textstyle =\) \(\displaystyle 0\)
    \(\displaystyle -{\hbar^2 \over 2ma^3} + m\omega^2 a\) \(\textstyle =\) \(\displaystyle 0\)
    \(\displaystyle a^2\) \(\textstyle =\) \(\displaystyle {\hbar \sqrt{2}m\omega}\)

    and the energy is obtained by

    \(\displaystyle E(a_{\rm min})\) \(\textstyle =\) $\displaystyle {\hbar^2 \over 4m}{\sqrt{2}m\omega \over \hbar} +
{1 \over 2}m\omega^2 {\hbar \over \sqrt{2}m\omega}$
    \(\textstyle =\) \(\displaystyle {\hbar \omega \over \sqrt{2}} > {\hbar \omega \over 2}\)

    The result is larger than the true ground state energy, as expected. The error made by this trial wavefunction is

    \[E(a_{\rm min}) - E_0 \over E_0} ={\hbar \omega/\sqrt{2} -\hbar \omega/2 \over \hbar\omega/2} = \sqrt{2}-1 \approx 0.41 = 41 % \]

    \begin{displaymath}
{E(a_{{\rm min}}) - E_0 \over E_0} =
{\hbar \omega/\sqrt{2}...
...omega/2 \over \hbar\omega/2} = \sqrt{2}-1 \approx 0.41 = 41 \%
\end{displaymath}

    which is a relatively large error.


    This page titled 1.2: Example 2: The Harmonic Oscillator Revisited is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.